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Abstract—Depth map, also known as range image, can directly
reflect the geometric shape of the objects. Due to several issues
such as cost, privacy and accessibility, face depth information is
not easy to obtain. However, the spatial information of faces is
very important in many aspects of computer vision especially in
the biometric identification. In contrast, scene depth information
is related easier to obtain with the development of autonomous
driving technology in recent years. An idea of face depth estima-
tion inspired is to bridge the gap between the scene depth and
the face depth. Previously, face depth estimation and scene depth
estimation were treated as two completely separate domains. This
paper proposes and explores utilizing scene depth knowledge
learned to estimate the depth map of faces from monocular 2D
images. Through experiments, we have preliminarily verified the
possibility of using scene depth knowledge to predict the depth
of faces and its potential in face feature representation.

Index Terms—depth estimation, face depth map, scene depth
map

I. INTRODUCTION

In nature, most creatures with a single eye are extinct. This
is because most species in nature are the same as humans,
and they need two eyes for three-dimensional positioning. This
fact accords with Darwin’s theory of evolution [1]. Monocular
depth estimation is to estimate the distance between each pixel
in the image and the source by using an RGB image from a
unique perspective. Humans can easily do monocular depth
estimation because of the large amount of prior knowledge.
However this goal is still difficult to achieve for machines.

In recent decades, biometrics has attracted the attention of
researchers because of its uniqueness, stability, versatility and
difficulty to steal and forge. Face is one of the most popular
biometric features. Nowadays, face based applications widely
exist in security, medical, entertainment and other fields [2]
[3]. Because the human vision is three-dimensional, 2D face
images are lack of face space stereo information. There is no
doubt about the importance of facial spatial information. In
recent years, advances and popularity of inexpensive RGB-D
sensors enable us utilize three-dimensional information [4] [5]
[6]. However, it is still not easy to obtain 3D face data due to
privacy issues. So monocular depth estimation inspired us to
acquire 3D information from 2D face images.

Depth estimation of a scene from a single photo has a wide
range of applications in robotics navigation, augmented reality,
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three-dimensional reconstruction, and autonomous driving. In
the ancient Chinese physiognomy [7], the forehead, nose,
cheeks, etc. of the face correspond to various terrains in dif-
ferent positions, which makes us think of using the knowledge
of the depth of the scenes learned by existing models.

At present, most scene depth estimations are based on
the conversion of two-dimensional RGB images to RGB-D
images. They mainly use the Shape-from-X methods obtaining
the depth shape of the scene from the image brightness,
viewing angles, luminosity, texture information, etc. There
are also some methods that combine Structure From Mo-
tion (SFM) [8] or Simultaneous Localization And Mapping
(SLAM) [9] to estimate the camera pose. Although there are
many devices that can directly obtain the scene depth, the
equipment is expensive. It is also possible to use binocular
stereo vision for depth estimation. Because the binocular
stereo vision method requires stereo matching to perform pixel
point correspondence and disparity calculation, the calculation
complexity is also high, especially for low-texture scenes, the
matching effect is not good. Therefore, the monocular depth
estimation is relatively cheaper and easier to popularize. There
is accumulated research work in the monocular scene depth
estimation.

Suppose that there is a 2D image I, and we need a function
F to calculate its corresponding depth D. This process can be
written as:

D = F (I) (1)

There is no doubt that F is a very complex function. Because
getting the specific depth from a single image is equiva-
lent to inferring the three-dimensional space from the two-
dimensional image. Therefore, traditional depth estimation
methods don’t work very well in monocular depth estimation,
people are more focused on studying stereo vision that is to
get depth information from multiple images. We can obtain
the change of disparity between two pictures according to
the change of viewing angle, so as to achieve the purpose
of obtaining the depth.

As early as the end of the last century, researchers began
to use machine learning methods to estimate depth from a
single picture. Deep learning is currently as the most popular
tool for function fitting [10], and researchers hope to use it
to infer the corresponding depth of one single image through
some inherent properties of the input picture. From 2014 to
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the present, due to the development of big data and GPU
computing [11] [12] [13], a series of results in scene depth
estimation have been produced by using deep learning.

In this paper, we propose and explore utilizing scene depth
knowledge learned to estimate the depth map of faces from
monocular 2D images. In experiments, we designed some case
studies using the Bosphorus 3D Face Database [14]. Through
experiments, we have preliminarily verified the possibility of
using scene depth knowledge to predict the depth of a face
and its potential in face feature representation.

II. RELATED WORK

A. Face Depth Estimation

Since the 1990s, researchers have started to use machine
learning methods to estimate the depth of human faces from
monocular images. S. H. Lai et al. used the raw image data
in the vicinity of the edge to estimate the depth from defocus
[15]. Sun and Lam converted the depth estimation of face
images into a independent component analysis (ICA) model
problem [16]. Kong et al. estimated the face image depth based
on similarity by using Delaunay triangulation [17]. Since 2014,
with the development of deep learning, researchers have suc-
cessively used deep learning methods to perform monocular
face depth estimation. Cui et al. used a deep neural network
with a cascaded FCN and CNN architecture to estimate depth
information of RGB face images [18]. Pini et al. used a
conditional Generative Adversarial Network for learning to
translate intensity face images into their corresponding depth
maps [19]. Arslan and Seke applied a conditional Wasserstein
GAN structure to perform face depth estimation [20].

B. Scene Depth estimation

Eigen and Fergus used a multiscale convolutional network
architecture to predict the depth map from a single image
[21]. Laina et al. proposed a fully convolutional architec-
ture encompassing residual learning to model the mapping
between monocular images and corresponding depth maps
[22]. Alhashim and Wonka used a standard encoder-decoder
architecture with features extracted using pre-trained networks
to get the depth [23]. For the above methods, it is necessary
to know in advance the reference standard of the depth value
corresponding to a large number of input pictures as training
constraints, so as to back-propagate in the deep neural net-
work, and train our neural network to perform depth prediction
for scenes. It is referred to as supervised learning. In practical,
it is not easy to obtain the depth value corresponding to the
scene. At present, the commonly used method is to obtain the
depth from the infrared sensor such as kinect [24] or with
the help of laser lidar. Though the infrared sensor is relatively
cheap, the collected depth range and accuracy are limited. In
contrast, the cost of lidar is high. Using unsupervised learning
for training, we can get a deep neural network model without
knowing the depth before. Godard et al. used unsupervised
learning method which is without ground truth to estimate the
depth. The basic idea is to match the pixels of the left and right
views to get the disparity map so as to calculate and optimize

the depth map by Left-Right Consistency [25]. For getting a
better performance, Godard et al. used self-supervised learning
with a standard, fully convolutional, U-Net to predict the depth
[26].

III. MATERIALS AND METHODS

In general, 3D scene understanding dataset can be divided
into outdoor scene dataset and indoor scene dataset. The repre-
sentative of outdoor scene and indoor scene datasets are KITTI
[27] and NYU Depth V2 [4] respectively. In this project, our
flowchart is indicated as Fig. 1. These two 3D scene datasets
are utilized to trained by supervised or unsupervised learning
by various deep neural network structures.

A. Supervised Learning

Generally, it is required to know in advance the depth values
corresponding to a large number of input pictures as training
constraints, so as to back-propagate the deep neural network
and train our neural network for depth prediction of similar
scenes. The loss function of the depth regression problem is
considering the difference between the true value of the depth
map and the predicted value of the depth regression network.
In Densedepth [23], the loss function can be indicated as:

L (y, ỹ) =
c

n
∗

n∑
i

|yi − ỹi|+
1

n

n∑
i

|gx (yi, ỹi) + gy (yi, ỹi)|

+
1− SSIM (y, ỹ)

2
(2)

where y indicates the ground truth depth map, and ỹi
indicates the generated depth map. c is a constant, empirically
set to 0.1. gx and gy are functions of computing the differences
in components x and y for the depth maps gradients. Structural
Similarity Index (SSIM) [28] is a metric to measure the
similarity between y and ỹi.

In this strategy, many well-known multi-layer pre-trained
networks with different structures can fully utilize the advan-
tages of deep neural networks as a function simulator.

B. Self-supervised Learning

1) Stereo training modality: In stereo vision, it is supposed
that there are two cameras L and R, and one point whose
coordinates are (x,D). The disparity represents the translation
value required for the pixels in the left camera to form the
corresponding pixels in the right camera. According to the
triangle similarity law, the disparity denoted as dis can be
calculated as:

dis = xL − xR =
f ∗ b
D

(3)

where f is the focal length of the camera, and b is the distance
between two cameras. Therefore, a mapping function F for
predicting the disparity is expected as:

IL (dis+ xL) = IL (F (xL) + xL) = IR (xR) (4)

Thus, IL is used for the input, and IR is used for the
reference, the model for predicting disparity can be achieved.



Fig. 1. The schematic diagram of face depth estimation by learning the scene depth knowledge

Finally, the depth map can be obtained with disparity and
camera parameters b and f . When in the training process, the
problem is formulated as the minimization of a photometric
reprojection error as:

Lp = min
∑
τ

E(It, I〈τ〉) (5)

Lp =
∑
τ

α
1− SSIM(It, I〈τ〉)

2
+ (1− α)

∥∥It − I〈τ〉∥∥ (6)

where It represents the target image, Iτ represents the source
image and I〈τ〉 represents the sampled source image. In
Monodepth2 [26], the value of α is fixed as 0.85 empirically,
and the final loss combining per-pixel smoothness and masked
photometric losses is as:

L = c1Lp + c2Ls (7)

where
Ls =

∣∣∣∣∂xdtdt
∣∣∣∣ e−|∂xIt| + ∣∣∣∣∂y dtdt

∣∣∣∣ e−|∂yIt| (8)

In the equation above, dt represents the mean depth.
In PyDNet [29], in addition to the above losses, the total

loss is added to Left-Right Disparity Consistency Loss as:

Lc =
∑
τ

∣∣∣dislτ − disrτ+dislτ ∣∣∣ (9)

2) Mono training modality: Our source image Iτ could
be the second view of It in stereo training while Iτ are the
temporally adjacent frames of It in mono training, that is,
Iτ ∈ {It−1, It+1}. Additionally, Iτ includes both the second

view and temporally adjacent frames of It in the mix training
modality.

C. Dataset

1) KITTI dataset: It is currently the world’s largest com-
puter vision algorithm evaluation dataset in autonomous driv-
ing scenarios [27]. It contains real image data collected
from scenes such as urban areas, rural areas, and highways.
Each image can contain up to 15 cars and 30 pedestrians,
with various degrees of occlusion and truncation. The entire
dataset consists of 389 pairs of stereo images and optical
flow diagrams, visual ranging sequences of 39.2 km and
more than 200k 3D labeled objects images. The sampled and
synchronized frequency is 10 Hz. The scenes of the raw dataset
are classified as ‘Road’, ’City’, ’Residential’, ’Campus’ and
’Person’. There are 8 types annotations in images. They are
’Car’, ’Van’, ’Truck’, ’Pedestrian’, ’Person’, ’Cyclist’, ’Tram’
and ’Misc’.

2) NYU Depth V2 dataset: It is composed of video se-
quences of various indoor scenes [4]. The images are recorded
by the camera of Microsoft Kinect. The data set contains 1449
densely labeled pairs of RGB and depth images aligned, and
contains 464 new scenes in 3 cities and 407024 unlabeled
frames.

3) Bosphorus 3D Face Database: It contains 105 subjects
and 4666 faces in the database [14]. One third of the subjects
are professional actors or actresses. There are various expres-
sions (up to 35), head poses (13 yaw and pitch rotations) and
varieties of face occlusions for each subject. It can be used
for human face processing tasks including but not limited to



facial expression recognition, face recognition under various
conditions and 3D face reconstruction.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Qualitative Results and Analysis

For doing qualitatively evaluation, we present case outputs
of face depth maps generated from different advanced models
trained with scene depth data (see Fig. 2). The ID of the
example case is bs002 CR RU 0 of Bosphorus 3D Face
Database. The ground truth depth image and its corresponding
color image are transformed from 3D point cloud file of the
Bosphorus database.

Visually, the three sub-figures Fig. 2(c), (d), (g) retain the
outline of the human face well. Fig. 2(c) is output from
the model PyDNet trained by the KITTI dataset. Fig. 2(c)
preserves the contour of the face most intact, but the relative
depth displayed is not accurate. The image does not show the
correct spatial information for the closest nose tip. Fig. 2(d)
is output from the model Monodepth2 trained by the KITTI
dataset, and the training modality of it is mono. Fig. 2(d) shows
the correct spatial information for the closest nose tip but loses
the contour of the ear. Fig. 2(g) is output from the model
DenseDepth trained by the NYU Depth V2 dataset. Fig. 2(g)
shows the correct spatial information for the closest nose tip,
and preserves the contour of the ear. But the depth information
shown in the upper left corner and bottom right corner is not
correct.

Regarding the texture, Fig. 2(c) seems to be with the largest
smoothness among above three depth maps generated visually.
Quantitatively, texture is often described by its roughness. We
assume the image denoted as I(x, y). Autocorrelation function
[30] is usually used as the texture measure as:

C (ξ, η, a, b) =

∑a+w
x=a−w

∑b+w
y=b−w I(x, y)I(x− ξ, y − η)∑a+w

x=a−w
∑b+w
y=b−w[I(x, y)]

2

(10)
where (a,b) is the pixel in the window which size is (2w +
1) ∗ (2w+ 1). ξ, η = ±0,±1,±2...±N . ξ and η are shifting
variables on the pixels.

Three autocorrelation function graphs on best three depth
maps generated are shown as Fig. 3. In the autocorrelation
function graph, a larger downward trend as eta and epsilon
increasing means a smaller smoothness of the corresponding
image, which accords with our visual feelings. Fig. 3(c)
indicated Fig. 2(g) is with a more coarseness because of a
larger change in amplitude, which accords with the fact of a
face.

B. Quantitative Results and Analysis

The Structural Similarity Index (SSIM) [28] is the widely
used standard for evaluating structural similarity in images that
evaluates the quality of a processed image from a ground truth
image. We calculate the SSIM for above six models as:

SSIM(a, b) = [l(a, b)]α[c(a, b)]β [s(a, b)]γ (11)

where
l(a, b) =

2µaµb + C1

µ2
a + µ2

b + C1
(12)

c(a, b) =
2σaσb + C2

σ2
a + σ2

b + C2
(13)

s(a, b) =
σab + C3

σaσb + C3
(14)

In the above equations, there are two images denoted as a and
b. µa and µb indicate the local mean values of corresponding
images, σa and σb indicate the standard deviations and σab
indicates the cross-covariance for images.

We test various models trained by scene depth data or face
depth data on the Bosphorus database. The results of SSIM
values for above six scene models and one face model by the
3D Morphable Model (3DMM) method [31] are summarized
as Table I. The 3DMM based method achieves the largest
SSIM value, which is not surprising because of face data
assistance. Both in visual effects and evaluation indicators,
these three generated depth maps can achieve relative good
results. Among them, the depth map generated by Densedepth
trained by NYU Depth V2 dataset is the best in visual effect
and quantitative indicators. We also conclude that models
trained by stereo modality for 3D scene depth estimation
seem to be not suitable for predicting face depth maps. Fig.
4 shows local SSIM maps of the best three depth maps
generated corresponding to the ground truth in the example
case. The area with the smaller SSIM value represented by
dark pixels corresponds to the area where the generated image
is significantly different from the reference image. The area
with large local SSIM value represented by bright pixels
corresponds to uniform regions of the reference image. Here
we find that the depth map generated by Densedepth (NYU
Depth V2) predicts well on the nose tip, chin and most of the
face area, although its SSIM value is the lowest among above
three models.

C. Face Feature Representation

In this section, we have investigated preliminarily whether
the generated depth map can be used as a distinguishable fea-
ture to infer its potential in biometric recognition applications.
A larger Euclidean distance between features of classes is
expected. We assume that in n-dimensional space there are two
points A = (a1, a2, ...an), B = (b1, b2, ...bn). The Euclidean
distance is calculated as:

d(A,B) =

√√√√ n∑
i=1

(ai − bi)2 (15)

The Case 1 is investigated for the same person with different
states. In this case, we calculate the average Euclidean distance
between images of one subject in the Bosphorus database.
The Case 2 is investigated for different persons with differ-
ent states. In this case, we calculate the Euclidean distance
between all images of different subjects. In this section, the
model of Monodepth2 with mono training modality is selected
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Fig. 2. A case study (ID: bs002 CR RU 0) of generating depth maps by various models. (a) Ground truth RGB image. (b) Ground truth RGB image. (c)
PyDNet pretrained by the KITTI dataset. (d) Monodepth2 trained by the KITTI with mono training modality. (e) Monodepth2 trained by the KITTI with
stereo training modality. (f) Monodepth2 trained by the KITTI with mono plus stereo training modality. (g) Densedepth trained by the NYU depth dataset.
(h) Densedepth trained by the KITTI dataset.
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Fig. 3. Autocorrelation function graphs on above best three depth maps generated (a) Fig. 2(c). (b) Fig. 2(d). (c) Fig. 2(g).



TABLE I
Results measured by the structural similarity (SSIM) index

Method SSIM Knowledge Training Modality
PyDNet 0.552 Cityscapes + KITTI Self-Supervised Learning (Mono)

Monodepth2 0.627 KITTI Self-Supervised Learning (Mono)
Monodepth2 0.510 KITTI Self-Supervised Learning (Stereo)
Monodepth2 0.602 KITTI Self-Supervised Learning (Mix)
Densedepth 0.647 ImageNet + NYU Depth V2 Supervised Learning
Densedepth 0.609 ImageNet + KITTI Supervised Learning

3DMM 0.745 Basel Face Model [32] -

Fig. 4. Local SSIM maps of above best three depth maps generated by (a) PyDNet. (b) Monodepths2 (Mono). (c) Densedepth (NYU Depth V2).

TABLE II
Case studies of Euclidean Distance in the Bosphrous database

Case 1: Intra-Person RGB (Original) Depth (Generated)
Mean Euclidean Distance 8.64× 103 2.10× 104

Case 2: Inter-Person RGB (Original) Depth (Generated)
Mean Euclidean Distance 1.07× 104 2.22× 104

to generate the face depth map. In the experiment, all the
images are converted to grayscale. The results are shown in
Table II, and we find that the mean Euclidean distance between
generated depth maps significantly increases to 243% in Case
1 approximately, which are for the same person. In Case 2,
the mean Euclidean distance between generated depth maps
still significantly increases to 207%. Since that Case 2 is for
different persons, the mean Euclidean distance between RGB
images increases comparing with Case 1, which is reasonable.
Above experiments indicate the generated depth could be a
effective feature in biometric recognition applications, because
it makes face images more distinguishable.

V. CONCLUSION

In this paper, we propose and explore utilizing scene depth
knowledge learned to estimate the depth map of faces from
monocular 2D images. In the study, we have preliminarily
verified the possibility of using scene depth knowledge to
predict the depth of faces in the visual effect and quantita-
tive indicators. Through investigating the Euclidean distance
changes, we have found that the face depth map predicted

by scene models presented could be an effective feature
in biometric recognition applications. This paper provides
another way to predict the face depth without face related
knowledge. In the future, it is expected to be utilized in the
face processing tasks.
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